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Abstract: Spatial covariance mapping can be used to identify and measure the activity of disease-
related functional brain networks. While this approach has been widely used in the analysis of cer-
ebral blood flow and metabolic PET scans, it is not clear whether it can be reliably applied to rest-
ing state functional MRI (rs-fMRI) data. In this study, we present a novel method based on
independent component analysis (ICA) to characterize specific network topographies associated
with Parkinson’s disease (PD). Using rs-fMRI data from PD and healthy subjects, we used ICA
with bootstrap resampling to identify a PD-related pattern that reliably discriminated the two
groups. This topography, termed rs-MRI PD-related pattern (fPDRP), was similar to previously
characterized disease-related patterns identified using metabolic PET imaging. Following pattern
identification, we validated the fPDRP by computing its expression in rs-fMRI testing data on a
prospective case basis. Indeed, significant increases in fPDRP expression were found in separate
sets of PD and control subjects. In addition to providing a similar degree of group separation as
PET, fPDRP values correlated with motor disability and declined toward normal with levodopa
administration. Finally, we used this approach in conjunction with neuropsychological performance
measures to identify a separate PD cognition-related pattern in the patients. This pattern, termed
rs-fMRI PD cognition-related pattern (fPDCP), was topographically similar to its PET-derived coun-
terpart. Subject scores for the fPDCP correlated with executive function in both training and testing
data. These findings suggest that ICA can be used in conjunction with bootstrap resampling to
identify and validate stable disease-related network topographies in rs-fMRI. Hum Brain Mapp
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INTRODUCTION

Spatial covariance mapping is an analytical method
being used currently to identify and measure the activity
of large-scale brain networks in resting state functional
imaging data [Eidelberg, 2009; Habeck and Stern, 2010;
Spetsieris and Eidelberg, 2011]. This approach has been
applied to scan data from individuals with brain disor-
ders including Alzheimer’s disease, Parkinson’s disease
(PD), Huntington’s disease, Tourette syndrome, and dys-
tonia [Carbon and Eidelberg, 2009; Feigin et al., 2007b;
Habeck et al., 2008; Niethammer and Eidelberg, 2012;
Pourfar et al., 2011], as well as healthy subjects [Spetsie-
ris et al., 2015]. Of these, spatial covariance analysis has
been used most extensively in the study of PD, revealing
the presence of reproducible, highly specific network
topographies associated with motor [Ma et al., 2007;
Niethammer and Eidelberg, 2012; Spetsieris and
Eidelberg, 2011; Teune et al., 2013; Wu et al., 2013] and
cognitive [Huang et al., 2008; Mattis et al., 2011; Meles
et al., 2015; Niethammer et al., 2013] disease manifesta-
tions. Indeed, quantitative measurements of the expres-
sion of these networks in individual subjects [Eidelberg,
2009; Spetsieris and Eidelberg, 2011] has been used pro-
spectively to improve diagnostic accuracy in clinically
uncertain cases [LeWitt et al., 2011; Tang et al., 2010b;
Tripathi et al., 2016], objectively evaluate the effects of
treatment [Asanuma et al., 2006; Feigin et al., 2007a; Mat-
tis et al., 2011; Mure et al., 2011], measure the rate of dis-
ease progression [Huang et al., 2007b; Niethammer and
Eidelberg, 2012; Tang et al., 2010a], and predict clinical
outcome in individuals at risk for developing the disor-
der [Holtbernd et al., 2014; Wu et al., 2014].

Previous spatial covariance mapping studies relied
mainly on metabolic brain imaging with 18F-fluorodeoxy-
glucose (FDG) positron emission tomography (PET),
although the network algorithm has also been applied
successfully with cerebral perfusion imaging using either
single photon emission computed tomography or arterial
spin labeling (ASL) magnetic resonance imaging (MRI)
[Feigin et al., 2002; Holtbernd et al., 2014; Ma and Eidelberg,
2007; Ma et al., 2010; Melzer et al., 2011]. Indeed, these
studies suggest that steady state functional imaging meth-
ods are generally conducive to network analysis using spa-
tial covariance algorithms. It is not clear, however,
whether this analytical approach is applicable to time
course data as acquired with resting state functional MRI
(rs-fMRI). In a recent rs-fMRI study [Wu et al., 2015], prin-
cipal component analysis (PCA) was applied to averaged
square root of the power maps of low-frequency blood

oxygen level-dependent (BOLD) signal to identify a signifi-
cant PD-related covariance pattern. Even so, discarding
the temporal fluctuations that define rs-fMRI networks
may compromise the accuracy and reliability of the
derived network topographies.

Independent component analysis (ICA) [Beckmann
et al., 2005; Calhoun et al., 2001a, 2001b; Damoiseaux
et al., 2006; van de Ven et al., 2004] offers an alternative
method to isolate disease-related networks from rs-fMRI
data. This approach identifies maximally independent
signal sources or imaging features in the observed tem-
poral fluctuations [Calhoun et al., 2009]. ICA approaches
to analyze rs-fMRI data have proven useful in character-
izing large-scale brain networks at the individual or
group levels. At the group level, spatial maps for a given
network can be obtained using either dual regression or
back-reconstruction methods [Calhoun et al., 2009;
Filippini et al., 2009]. Nonetheless, group-level compari-
sons are usually performed using typical univariate
voxel-wise techinques [Baggio et al., 2015; Calhoun et al.,
2009; Filippini et al., 2009; Garcia-Garcia et al., 2013;
Mohammadi et al., 2012; Yao et al., 2014] to characterize
local changes within a specific component map. This
approach, however, has limitations for single subject
measurements of the activity of the network as a whole,
which is crucial for many research applications. Indeed,
to date, ICA methods have not been successfully used to
identify replicable disease-related networks in rs-fMRI
data, or to quantify the expression of these topographies
prospectively on an individual case basis.

In this study, we describe a novel ICA approach for the
identification and quantitative assessment of disease-
related network topographies in rs-fMRI data. This is the
first use of ICA to identify an rs-fMRI disease-related net-
work topography that can be applied prospectively at the
individual level. Our method takes advantage of ICA in
that it does not require a priori selection of regions-of-
interest as seed-based correlation does [Lee et al., 2013].
This approach can also reduce noise in contrast to meth-
ods such as amplitude of low-frequency fluctuation
(ALFF) technique, which may be sensitive to the physio-
logical noise in certain brain regions [Song et al., 2011]. In
addition, the proposed method takes advantage of spatial
covariance mapping algorithms which can identify
disease-related topographies in patient groups, while
quantifying abnormal network expression values in indi-
vidual subjects [Eidelberg, 2009; Spetsieris et al., 2013].
Indeed, graph-theoretic analysis [Gottlich et al., 2013] can
be used to identify a network topography, but does not
routinely provide individual subject expression values. We

r Vo et al. r

r 618 r



identified and validated specific functional brain networks
associated with motor and cognitive dysfunction in PD
patients. The results were compared to the established
PET-derived networks, which verified the robustness of
the present rs-fMRI-derived networks.

MATERIALS AND METHODS

Subjects

We studied 20 PD subjects (14M/6F; age 59.8 6 8.5
(mean 6 SD) years) and 20 healthy controls (12M/8F; age

Figure 1.

Identification and forward application of disease-related patterns

using resting state fMRI. (A) rs-fMRI scan data are analyzed with

spatial group ICA to generate group IC maps. Dual regression is

then used to estimate spatial maps and temporal dynamics for

individual subjects. Based on the group and subject maps, subject

scores are computed, which represent the expression of each

IC in a given subject’s scan data. The ICs that best separate con-

trol and disease groups are selected by bootstrap resampling

and logistic regression analysis. The disease-related pattern is

determined as a linear combination of the selected group ICs;

coefficients (region weights) on each IC are estimated through a

second bootstrap procedure applied to the corresponding sub-

ject scores (see text). (B) For forward application in rs-fMRI

scan data from prospective single cases, dual regression is used

to estimate individual spatial maps for new subjects using the

group IC maps identified in the pattern derivation procedure.

Subject scores for the disease-related pattern are computed by

linear combination of expression values for the selected ICs,

using the coefficient defined in the derivation step.
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52.6 6 9.3 years). These subjects underwent rs-fMRI on a
General Electric 3.0 Tesla Signa HDxt scanner at North Shore
University Hospital (NS). The PD subjects were scanned in a
medication-free (off) state, approximately 12 h after the cessa-
tion of antiparkinsonian medication. Eight of the 20 PD sub-
jects were additionally scanned in the medicated (on) state 1-
2 h following their usual morning levodopa/carbidopa dose.
The clinical characteristics of these subjects are provided in
Supporting Information Table SI.

Of the subjects studied with rs-fMRI, 19 PD and 12
healthy subjects were additionally studied with FDG PET
on the General Electric Advance PET tomograph at The
Feinstein Institute for Medical Research. Fourteen addi-
tional PD (12M/2F; age 63.8 6 11.3 years) and 14 healthy
control (10M/4F; age 61.0 6 11.7 years) subjects underwent
rs-fMRI scans for validation. These subjects were scanned
at the University of Florida at Gainesville (UF-G) using a
3.0 Tesla Siemens scanner.

All PD subjects were assessed at the time of rs-fMRI
using the motor portion of the Unified Parkinson’s Disease
Rating Scale (UPDRS). Ratings in all subjects were
obtained in the off-state. In addition to a composite
UPDRS motor rating, each subject was rated on a subscale
for akinesia-rigidity, defined by the sum of items 18
(speech), 19 (facial expression), 22 (rigidity), 27 (arising
from chair), 28 (posture), 29 (gait), 30 (postural stability),
and 31 (body bradykinesia). The subjects were separately
rated for tremor according to a subscale defined by the
sum of items 20 (tremor at rest) and 21 (action or postural
tremor of hands) [Mure et al., 2011]. Motor manifestations
of PD were considered to be tremor dominant if the
summed limb UPDRS tremor scores were� 4, with at least
one limb scoring� 2 [Isaias et al., 2010; Mure et al., 2011].
Of the 20 PD subjects, only five were tremor dominant
based on these criteria. On-state UPDRS ratings were addi-
tionally obtained in the PD subjects who underwent repeat
rs-fMRI in the treated condition. Nineteen PD subjects in
the NS group underwent neuropsychological testing in the
off-state according to a standardized test battery including
California Verbal Learning Test (CVLTsum) [Huang et al.,
2007a]. Ethical permission for these studies was obtained
from the Institutional Review Boards of Northwell Health
and UF-G. Written consent was obtained from each subject
following detailed explanation of the procedures.

Resting State Functional MRI

Subjects were scanned in an awake, eyes open resting
state; no specific task was performed in this condition. The
rs-fMRI protocol involved an 8-min acquisition, with 240
volumes, FOV 5 24 cm, TE 5 28 ms, TR 5 2 sec, flip angle
778, 40 slices of 3-mm thickness. In addition, a T1-
weighted structural image was acquired for each subject
with FOV 5 24 cm, TE 5 2.9 ms, TR 5 7.6 ms, TI 5 650 ms,
flip angle 88, 176 slices of 1-mm thickness. The 8-min rs-
fMRI acquisitions from both patients and control subjects

were divided into two 4-min blocks. In each subject, each
4-min block was randomly assigned to a training set (used
for pattern identification) or a testing set (used for pro-
spective computation of subject scores, which quantify the
expression of the resulting pattern in each of the subjects).
In the NS PD cohort, rs-fMRI blocks acquired off medica-
tion were used either for training or for testing; blocks
obtained in the on-state were used only for testing. In the
UF-G cohort, PD subjects were scanned in the off-state; the
resulting blocks were used exclusively for testing.

Pre-processing was performed using the FMRIB Soft-
ware Library (FSL; www.fmrib.ox.ac.uk/fsl). The pre-
processing included motion correction, brain extraction,
spatial smoothing (kernel 5 8 mm; FWHM) and temporal
high-pass filtering (cutoff frequency 5 1/120 Hz). We
investigated the potential effects of motion by examining
both relative and absolute motion displacement during the
rs-fMRI exam in the NS and UF-G datasets. In each sub-
ject, head motion parameters were examined. All subjects
had less than 1 mm of absolute motion displacement and
less than 0.5 mm of relative motion displacement. There
were no significant (P> 0.13) differences between PD
patients and healthy control subjects in either relative or
absolute movement displacement during rs-fMRI in either
of the two datasets (Supporting Information Table SII).
The resulting fMRI volumes were registered to the indi-
vidual subject’s structural T1 image and then to the stand-
ard Montreal Neurological Institute (MNI) 152 template.
Finally, the rs-fMRI data were intensity normalized to
reduce variability and improve the reliability of ICA maps.

Pattern Identification

Overview

A diagram of disease-related network analysis method
using rs-fMRI is provided in Figure 1. The rs-fMRI data
were then analyzed using group-wise spatial ICA [Calhoun
et al., 2001a] with GIFT software (http://mialab.mrn.org/),
in which 40 group independent components (ICs) were
obtained. Subject spatial maps and temporal dynamics were
estimated using dual regression [Filippini et al., 2009]. The
number of components from the dataset was estimated
using a minimum description length (MDL) criterion. Subject
scores, reflecting the individual expression of each IC, were
computed by taking the dot product of the mean group
map with the subject’s spatial map using the voxel-based
computational algorithm described elsewhere [Spetsieris and
Eidelberg, 2011; Spetsieris et al., 2013].

Logistic regression (Matlab scripts, Mathworks) using a
forward-selection method was then applied to the data to
identify the subset of ICs associated with maximum separa-
tion of patient and control subject scores in the training data-
set [cf., Spetsieris et al., 2013]. To improve the stability of the
selected components and to optimize the estimation of
model parameters, bootstrap resampling was performed in
two stages: (1) The bootstrap was run 1,000 times on the
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Figure 2.

Network selection and parameter estimation. (A) Frequency his-

togram of ICs that best discriminate between the patient and con-

trol groups according to the bootstrap resampling procedure

(1,000 iterations). ICs that are not selected or with frequency 5 0

are not shown. (B) The plots show centered finite difference

approximations to the first (dark blue) and second (red) derivative

of the frequency histogram. The first derivative is minimal at IC3

and the second derivative changes sign between IC3 and IC28.

Based on this inflection point, we selected three ICs (IC9, IC14,

and IC3) for further analysis. (C) Frequency histograms of the

estimated coefficients for IC9, IC14, and IC3 according to boot-

strap resampling (1,000 iterations). For each iteration, model coef-

ficient was estimated for which the associated subject scores best

discriminated between patients and control subjects. The histo-

gram provides an estimate of distribution of the model coeffi-

cients. In this case, the estimated mean values for the relevant ICs

(0.7432 [IC9], 0.5393 [IC14], and 0.3959 [IC3]) were used to

define the disease-related pattern. The same coefficients were

used prospectively to compute corresponding expression values

(scores) for the disease-related pattern in individual subjects.
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training data to identify the ICs that discriminated the two
groups with greatest frequency (Fig. 2A). The frequency cri-
terion used for IC retention can be chosen by the user. In the
current analysis, an objective threshold was provided by
computing the inflection point of the IC frequency histogram
derived from the logistic regression model performed for
each bootstrap iteration (Fig. 2A,B); (2) After selecting the rel-
evant ICs for pattern identification, bootstrap resampling
was performed a second time (1,000 iterations) on the train-
ing data to estimate model parameters (Fig. 2C). A specific
PD-related topographic pattern based on rs-fMRI, termed
fPDRP (in contrast to its PET-based counterpart pattern,
termed pPDRP), was determined as a linear combination of
the selected group ICs; the weights (coefficients) for the com-
ponent ICs were estimated through bootstrap followed by
regression analysis of the corresponding subject scores. A
quantitative measure of fPDRP expression (subject score)
was computed for each of the subjects through linear combi-
nation of the scores for the individual ICs according to the
estimated model coefficients. The details of the procedures
used to extract and validate disease-related network topogra-
phies using rs-fMRI are as follows.

Spatial group ICA

Prior to spatio-temporal ICA decomposition, PCA was
applied to the data for purposes of: (1) decorrelation and
whitening of the data covariance matrix at the individual
subject and group levels, and (2) reduction in dimensions to
match the number of extracted ICs. In the current rs-fMRI
dataset, a model order of 40 ICs was determined based on
MDL criteria [Calhoun et al., 2001a]. ICA decomposition
was performed using the InfoMax algorithm. Reliability of
the resulting ICs was estimated by bootstrap resampling
(100 iterations) using ICASSO [Himberg et al., 2004] imple-
mented in the GIFT toolbox. Centrotype estimates of the
resulting stable components were used to define the group
ICA maps used in the subsequent analyses.

In other words, we can define the rs-fMRI data matrix
for a group of subjects as D n3mð Þ, where n is the number
of time points after data reduction and temporal concate-
nation and m is the number of voxels corresponding to a
1-D vector reshaped from 3-D images. Note that A n3mð Þ
denotes a matrix A whose dimensions are n3m, where n
is the number of rows and m is the number of columns.
Group ICA spatial maps G k3mð Þ can be modeled by
G5W:D, where W k3nð Þ is an unmixing matrix that is esti-
mated using an iterative algorithm, and k is the number of
desired ICs such that k � n. In this study, ICs were labeled
according to the GIFT toolbox.

Dual regression

To define spatial maps and associated time courses for
individual subjects corresponding to the group ICA maps,
we used a dual regression approach [Filippini et al., 2009],
implemented in GIFT. First, after bootstrapping, the result-

ing set of group spatial maps was projected onto the rs-
fMRI data for each subject according to a general linear
model. This produces a set of subject-specific time courses
associated with each of the group spatial ICA maps. Next,
the resulting time courses are projected into the spatio-
temporal data from each subject to yield a set of individu-
alized spatial maps for each group ICA pattern.

In other words, dual regression yields pairs of subject-
specific estimates in a dual space; these values jointly
approximate the original group ICA map. In the first
regression step, Di5Ti:G; where Di ni3mð Þ is the rs-fMRI
data matrix for subject i and G k3mð Þ is estimated from
group ICA. (Note that ni is the number of time points of
the original data (without data reduction), m is the number
of voxels (3-D images were reshaped as a 1-D vector), and
k is the number of described ICs k � nið )). This model
allows for the estimation of the time course matrix
Ti ni3kð ) for subject i. In the second regression step, Di5Ti:
Si; Di and Ti are known, and we can estimate an individ-
ual spatial map Si k3mð Þ for that subject.

Network expression in individual subjects

To measure the expression of a given ICA-based topog-
raphy in individual case rs-fMRI data (referred to as the
subject-specific factor (SSF) or subject score), we used a
method analogous to that developed previously for single
case computations in metabolic PET data [Eidelberg, 2009;
Spetsieris and Eidelberg, 2011; Spetsieris et al., 2013]. In
this study, we modeled the subject spatial map, S

kð Þ
ij , as the

product of the subject score SSF
kð Þ

i , denoting a scalar quan-
tity representing the expression of pattern k in subject
i, and g

T kð Þ
j , denoting the corresponding group-wise spatial

map, plus E kð Þ
ij , a residual noise term not accounted for by

the group ICs and the corresponding subject scores. By
this formulation, a given IC is represented by the scalar
projection of the individual subject’s spatial map for that
IC and the corresponding group map. That is, SSF

kð Þ
i can

be estimated as the dot product of the group spatial map
and the subject spatial map. Note that the subject score of
component k in subject i SSF

kð Þ
i is the scalar projection of

group spatial map of component k onto the subject spatial
map of component k in subject i.

SSF
kð Þ

i 5
P

j S
kð Þ

ij :g
kð Þ

j , where g
kð Þ

j is the set of group spatial
maps, represented by k51; 2; . . . ; 40 independent unit-
ized column vectors, each with j components (voxels), and
S

kð Þ
ij is a matrix containing the subject spatial maps i51; 2;

. . . ; N (subjects) as row vectors of dimension j
(j51; 2; . . . ; M (voxels)). The subject score is the dot
product summed over the entire brain or brain mask. For
each IC, a voxel-based mask was constructed using
T> 3.4, P< 0.001 (peak voxel, uncorrected) as the cut-off.

Pattern selection

To ensure that network selection was data driven, all
components, including those that were potentially
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artifactual, underwent full analysis. Expression values
(SSFs) for all 40 ICs were computed for each of the patient
and control rs-fMRI cases in the combined group training
set. The resulting measures were entered into a logistic
regression model to identify the subset of ICs whose sub-
ject scores discriminated best between the two groups.

To select a reduced set of ICs, 1,000 bootstrap samples
were taken from expression scores of 40 ICs of all subjects
in the training dataset using sampling with replacement.
For each of these bootstrap samples, we identified the sub-
set of ICs that best discriminated patients from control
subjects. In aggregate, the samples were used to generate

an IC histogram (Fig. 2A), the shape of which was used as
the basis for pattern retention. In this study, the inflection
point of the IC histogram provided a useful criterion for
pattern selection.

Having selected a subset of ICs based on this criterion,
additional bootstrap resampling was performed (1,000 iter-
ations) to identify a specific PD-related pattern in the
training data. This was done using the subject scores for
the selected ICs to estimate the corresponding weights
(coefficients) on each pattern that, in linear combination,
best discriminated between patients and control subjects.
In this case, the histograms of the model coefficients (Fig.

Figure 3.

PDRP identified with rs-fMRI. (A) PDRP identified in rs-fMRI

(fPDRP, left) and PET (pPDRP, right) are shown on the MNI 152

template. fPDRP, derived from 20 normal controls and 20 PD

patients, is characterized by increased activity in the basal gan-

glia, thalamus, cerebellum/pons, anterior cingulate cortex (ACC),

and supplementary motor area (SMA). The major network

regions that defined the fPDRP corresponded closely to the

metabolically active (red areas) regional counterparts of the

pPDRP topography. [The color stripes show Z-values thresh-

olded at 60.5. Activity increases (fPDRP) or relative metabolic

increases (pPDRP) are displayed in red; relative metabolic

decreases (pPDRP) are displayed in blue.] (B) Expression scores

for fPDRP and pPDRP are increased in the PD patients com-

pared to normal controls (NL) (P< 0.001; Student’s t-test).

[Error bars represent standard errors of the means.] (C) fPDRP

subject scores correlated with UPDRS ratings for akinesia-

rigidity (r 5 0.61, P< 0.005, circles) in the PD subjects scanned

at North Shore University Hospital; tremor ratings measured in

the same subjects exhibited only a marginal relationship with

network expression values (r 5 0.39, P 5 0.09, triangles).
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2C) provided weights of (0.7432, 0.5393, 0.3959) for IC9,
IC14, and IC3, respectively.

PD-related pattern

Once the rs-fMRI PD-related topographic pattern
(fPDRP) was generated, the same coefficients were applied
to subject scores for the three ICs to compute a composite
fPDRP subject score for each individual. Network expres-
sion in training as well as validation data was computed
using the relevant group ICs in conjunction with the corre-
sponding individual subject spatial maps extracted by
dual regression. The raw time course data were not used
for these computations.

PD cognition-related pattern

PD cognition-related pattern identification method using
rs-fMRI has the same steps as disease-related pattern iden-
tification in Figure 1. However, only PD patients who
underwent neuropsychological evaluation were included
in this analysis. Linear regression was used to identify a
subset of ICs that correlated with test performance in the
training dataset of PD patients. As above, bootstrap resam-
pling was performed in two stages to improve the stability
of the selected components and to optimize the estimation
of model parameters. The ICs that were selected for fPDRP
were removed in this analysis. One thousand bootstrap
samples were taken from expression scores of 37 ICs. For
each of these bootstrap samples, we identified a subset of
ICs that correlated with test performance. Having obtained
a histogram of selected ICs (Supporting Information Fig.
S1A), we used the inflection point criterion (Supporting
Information Fig. S1B) as a threshold to select an appropri-
ate number of ICs. In this analysis, the three ICs having
the greatest frequency were selected (namely, IC18, IC5
and IC38). Bootstrap resampling (1,000 iterations) was per-
formed on the subject scores for these ICs to estimate the
optimal model of coefficients with which to generate the
composite rs-fMRI PD cognition-related pattern (fPDCP).
In this case, the weights were (0.4924, 0.4334, 0.4565) for
IC18, IC5, and IC38, respectively. fPDCP subject scores
were computed for each individual by linear combination
of the scores for the individual ICs according to the esti-
mated model coefficients.

Pattern Validation

fPDRP subject scores were correlated with UPDRS
akinesia-rigidity, tremor and total motor ratings obtained
in the NS derivation sample. To assess the test–retest reli-
ability of measured fPDRP expression in individual sub-
jects, subject scores for this pattern were computed
prospectively in the 4-min rs-fMRI blocks that were not
used for pattern identification (see above). Further valida-
tion was provided by computing fPDRP expression values
in rs-fMRI scans from an independent testing sample

scanned on a 3.0 Tesla MR platform at the UF-G. To obtain

the same scan length as acquired in the NS testing data

(see above), the first 4 mins of rs-fMRI acquisition were

used in the analysis of the UF-G data. rs-fMRI pre-process-

ing and registration to the MNI 152 template were per-

formed as in the NS data. Subject spatial maps and

temporal dynamics of this dataset were estimated using

dual regression using the 40 mean group maps obtained

in the NS data.

Forward Application

For a new subject who is not in the identification data-
set, we can compute composite subject score as in Figure
1B. First, we estimate the spatial maps corresponding to
group IC maps obtained in the identification step. We then
compute subject scores by projecting selected group IC
maps onto this subject spatial maps, and apply the same
regression weights of selected ICs as in the identification
step to compute composite subject score.

RESULTS

PD-Related Pattern

Pattern identification

In the training data, scans from PD patients and healthy
control subjects were distinguished by expression values
for IC9 (putamen/thalamus/cerebellum, P 5 0.015), IC14
(cerebellum/pons/anterior cingulate cortex, P 5 0.02), and
IC3 (primary motor cortex/supplementary motor area,
P 5 0.09). The two groups were discriminated by a linear
combination of these ICs (P< 0.005; permutation test, 5,000
iterations). The resulting rs-fMRI-based PD-related pattern,
termed fPDRP (Fig. 3A; Supporting Information Table

Figure 4.

Discrimination of PD from healthy subjects based on fPDRP

expression values. fPDRP expression was increased in PD

patients relative to normal (NL) subjects in the North Shore

University Hospital (NS) training sample (left, P< 0.001). The

difference is also significant in the NS (middle, P 5 0.008) and

UF-G (right, P 5 0.026) testing samples. [Error bars represent

standard errors of the means.]
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SIII), was defined by applying the corresponding coeffi-
cients to the voxel weights on each of the three ICs to
form the composite disease-related pattern (see Methods).
Voxel weights on the resulting disease-related topography
correlated (r 5 0.557, P< 0.05, corrected for spatial autocor-
relation [Ko et al., 2014]) with those on the PET-based
counterpart pattern, termed pPDRP.

Expression values (subject scores) were computed for
the rs-fMRI- and PET-based network topographies (i.e.,
the f- and pPDRP, respectively) in individuals scanned
with both imaging techniques. As expected, a significant
correlation (r 5 0.574, P< 0.005) was observed for expres-
sion values measured using the two methods. Moreover,
subject scores for both patterns (Fig. 3B) were significantly
elevated in PD relative to control subjects (P< 0.001; Stu-
dent’s t-tests). Indeed, significant increases in pattern
expression (Fig. 4, middle) were seen in the testing scans
of the PD subjects relative to their healthy counterparts
(P 5 0.008; Student’s t-test). Analogous abnormal fPDRP
elevations were observed (Supporting Information Fig.
S2A) in tremor dominant (n 5 5, P< 0.002) and atremulous
(n 5 15, P< 0.003; Student t-tests) PD patients; differences
between subgroups in pattern expression were not signifi-
cant (P 5 0.35). Of note, group differences in PDRP expres-
sion were similar for subject scores measured using the
PET- or rs-fMRI-based topographies (Supporting Informa-
tion Fig. S2B).

Clinical–network correlations

fPDRP subject scores computed in the off-state in the
NS sample (average of training and testing values) corre-
lated with concurrent UPDRS motor ratings obtained at
the time of rs-fMRI (r 5 0.54, P< 0.02). Correlations

between fPDRP expression and UPDRS subscale ratings
were examined in this cohort. This analysis (Fig. 3C)
revealed a significant network relationship with akinesia-
rigidity (r 5 0.61, P< 0.005; circles) but not tremor (r 5

0.39, P 5 0.09; triangles).

Validation cohort

Abnormal fPDRP elevations (Fig. 4, right) were also
observed in rs-fMRI scans from the independent UF-G
testing sample (P 5 0.026). fPDRP subject scores computed
in this group fell on the fitted line that related network
expression to UPDRS motor ratings in the NS patient
cohort. A significant correlation was present between the
two variables measured in the combined NS and UF-G PD
patient sample (r 5 0.48, P< 0.005).

fPDRP expression values: test–retest reliability and

levodopa response

fPDRP subject scores demonstrated good test–retest reli-
ability (ICC 5 0.72, 95% CI 5 [0.287, 0.895], P< 0.005). To
evaluate the effect of levodopa treatment on fPDRP
expression in individual patients, we compared subject
scores measured off- and on-medication in the eight PD
subjects who underwent rs-fMRI in both treatment condi-
tions. Levodopa-mediated reductions in fPDRP expression
(Fig. 5A) were seen in seven out of the eight PD subjects
(P 5 0.017; paired Student’s t-test), with a decline in base-
line network levels toward normal. A significant correla-
tion (Fig. 5B) was observed between levodopa-mediated
changes in fPDRP expression (DfPDRP[OFF – ON]) and
baseline fPDRP expression measured in the unmedicated
state (r 5 0.656, P< 0.05).

Figure 5.

Effect of levodopa administration on fPDRP network expression.

(A) fPDRP expression was abnormally elevated in rs-fMRI scans

from eight PD subjects studied in the unmedicated off-state

(OFF). Network activity declined (P 5 0.017; paired Student’s t-

test) when these subjects were re-scanned in the on-state (ON)

approximately 1 h following their usual dose of dopaminergic

medication. [Error bars represent standard errors of the

means.] (B) The baseline fPDRP expression scores off medica-

tion significantly correlated with the levodopa-mediated changes

in fPDRP expression (DfPDRP[OFF – ON]) (r 5 0.66, P< 0.05;

Pearson’s correlation).
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PD Cognition-Related Pattern

We also utilized the ICA approach to identify an inde-
pendent cognition-related network topography in the PD
rs-fMRI training data. In the PD derivation cohort, per-
formance on the CVLTsum, a measure of memory and
executive function, was correlated with expression values

for IC18 (cerebellum, r 5 20.27, P 5 0.13), IC5 (default-
mode network including parietal/frontal/temporal,
r 5 20.46, P 5 0.026), and IC38 (frontal, r 5 20.25,
P 5 0.15). Accordingly, a multiple regression model was
constructed based on subject scores for each of these com-
ponent topographies and used to estimate the respective
coefficients. These, in turn, were applied to the

Figure 6.

PDCP identified with rs-fMRI. (A) PDCP topographies identified

in rs-fMRI (fPDCP, top) and PET (pPDCP, bottom) data are

shown on the MNI 152 template. fPDCP, derived from 19 PD

patients, is characterized by a negative correlation between pat-

tern expression and performance on the California Verbal

Learning Test (CVLTsum). [The color stripes show Z-values

thresholded at 61.0. Relative metabolic increases (pPDCP) are

displayed in red; negative correlation (fPDCP) and relative meta-

bolic decreases (pPDCP) are displayed in blue.] (B) fPDCP

expression values correlated significantly with performance on

CVLTsum, a measure of memory and executive function, in the

training data (open circles, solid line; r 5 20.69, P< 0.001) and

in the within-subject testing data (filled circles, dashed line;

r 5 20.52, P< 0.02; Pearson’s correlations).
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corresponding voxel weights to generate a specific PD
cognition-related pattern (fPDCP) for the PD group.
Indeed, subject scores for the resulting composite pattern
exhibited a stable linear relationship with the CVLTsum

performance measure (r 5 20.58, P 5 0.005; permutation
test, 5,000 iterations). The fPDCP topography (Fig. 6A;
Supporting Information Table SIV) was similar to that of
its previously validated PET-based counterpart; a marginal
correlation (r 5 0.3, P 5 0.05, corrected for spatial autocor-
relation) was discerned between the two topographies.
fPDCP subject scores displayed excellent test–retest reli-
ability (ICC 5 0.795, 95% CI 5 [0.459,0.922], P 5 0.001) in
training and testing blocks obtained in the same individu-
als. Indeed, significant correlations with CVLTsum scores
were observed for fPDCP expression values computed in
training (r 5 20.69, P< 0.001) as well as testing (r 5 20.52,
P< 0.02) rs-fMRI scan blocks (Fig. 6B, solid and dashed
lines, respectively). In contrast to fPDRP expression values,
fPDCP subject scores did not correlate (P 5 0.26) with
UPDRS motor ratings obtained in the same patients at the
time of rs-fMRI. Analogously, a significant correlation
with CVLTsum was evident for fPDCP scores (average sub-
ject scores for training and testing values) (r 5 20.65,
P< 0.005), but not for fPDRP expression values for the
same group of subjects.

DISCUSSION

Use of ICA to Identify Disease-Related

Topographies

In this study, we developed a novel method for the
identification and quantitative assessment of disease-
specific network topographies using rs-fMRI and ICA
approach followed by multivariate analysis. The disease-
related pattern and disease-related subject score obtained
from rs-fMRI provide a summary of circuit abnormalities
in the brain networks. The disease-related pattern can be
more easily interpreted as a signature of neural networks
than common univariate voxel-wise approaches, which
cannot directly address interregional correlation in the
brain. In univariate approaches, voxel-wise analysis has to
be performed for all IC networks with multiple-
comparison correction across these ICs. Another advantage
of the present approach compared to univariate methods
is the ability to apply it prospectively at the individual
level [Habeck, 2010; Spetsieris et al., 2013]. As demon-
strated by the UF-G testing data, there was no need to
update the fPDRP topography when computing expression
values for new subjects that were not used to identify the
original pattern. Rather, subject scores and temporal
dynamics can be estimated for prospective cases with dual
regression using the spatial maps generated from the
training set. Indeed, individual subject expression values
for the disease-related topography can be computed in
testing scan data using precisely the same formulation as

in the training set. Prospective single case computation of
individual subject expression values for the disease-
specific group pattern is a critical function for clinical
investigation. Subject scores for the disease network com-
puted in this way can be correlated with independent
descriptors of the severity of clinical manifestations such
as UPDRS motor ratings or indices of cognitive disability
without additional data mining. Moreover, over-fitting
bias can be reduced by the two-stage bootstrap method,
which effectively lowers the search space to only 2-3 rele-
vant dimensions.

rs-fMRI has been used to study topographic changes in
PD subjects [Prodoehl et al., 2014]. Regional differences in
ALFF map were used to distinguish PD patients from con-
trol individuals [Skidmore et al., 2013a,b]. Changes in neu-
ral activity and functional connectivity in PD has also
been reported using seed-based correlations [Helmich
et al., 2011; Wu et al., 2011], ICA followed by univariate
voxel-wise searches [Szewczyk-Krolikowski et al., 2014],
and by graph-theory analysis [Gottlich et al., 2013].
Within-network abnormalities in the default-mode net-
work and the dorsal attention network [Baggio et al., 2015]
in PD with and without mild cognitive impairment
[Amboni et al., 2015; Tessitore et al., 2012] have also been
reported using ICA techniques. Nonetheless, this is the
first use of ICA to identify a reproducible rs-fMRI PD-
related network topography that is stable enough for pro-
spective use in individual subjects. We note that in a
recent rs-fMRI study, PCA was applied to ALFF maps
from PD patients and healthy subjects to identify a PDRP-
like covariance topography in the data [Wu et al., 2015].
To compare the two approaches, we applied the ALFF/
PCA method to the same rs-fMRI dataset used in this
study for fPDRP derivation. Thus, for each voxel, we com-
puted the averaged square root of BOLD signal power in
the 0.01–0.08 Hz window, normalized by mean within-
brain ALFF value for that subject. A PDRP was identified
in the combined group ALFF scan data (ALFF-PDRP)
using the method described in the earlier publication [Wu
et al., 2015]. While a discrete disease-related covariance
pattern was detected using this PCA approach, group dif-
ferences in pattern expression were modest by comparison
with ICA (training: P< 0.01; testing: P< 0.02 for PD>NL;
Student’s t-tests). There may be several reasons for this
difference: First, while ICA approach can reduce noise and
separate artifacts, ALFF is sensitive to the physiological
noise found in certain brain regions [Song et al., 2011]. Sec-
ondly, in the study by Wu et al. [2015], the averaged
square root of the power of BOLD signal was computed in
a frequency range of 0.01-0.08 Hz. However, different
brain regions have different frequency responses. For
example, the ALFF over a frequency range of 0.027–0.073
Hz is more specific to the basal ganglia than other fre-
quency ranges [Zuo et al., 2010]. Another study showed
that the decreased ALFF in amnestic mild cognitive
impairment was more prominent in a frequency range of

r Disease-Related Network Analysis with rs-fMRI r

r 627 r



0.01–0.027 Hz [Han et al., 2011]. Thus, ALFF over a fre-
quency range of 0.01–0.08 Hz may have failed to capture
specific non-Gaussian components identified by the ICA
approach. Indeed, discarding the temporal fluctuations
that define rs-fMRI networks by calculating averaged
square root of the power of low-frequency BOLD signal
may limit the sensitivity of the derived network topogra-
phies. Nonetheless, a formal comparison of these two
methods is necessary to confirm these observations.

Disease-Related Network Topographies: rs-fMRI

Versus PET

In this study, we identified a distinct PD-related topog-
raphy in the rs-fMRI data that distinguished patients from
healthy control subjects in the pattern derivation (training)
set and in an independent validation (testing) cohort. The
fPDRP pattern was similar to that of its PET-derived
pPDRP counterpart with remarkable homology of the rela-
tively active (red) network areas in the basal ganglia, thal-
amus, pons/cerebellum and peri-rolandic cortex, which
characterize this disease-related functional topography
[Eidelberg, 2009; Niethammer and Eidelberg, 2012]. As
with PET-based topography, the expression of the fPDRP
declines toward normal with dopaminergic treatment [Hir-
ano et al., 2008]. Furthermore, fPDRP expression positively
correlated with motor UPDRS scores as reported with
pPDRP [Asanuma et al., 2006; Eidelberg, 2009].

The fPDCP also resembled its PET-derived pPDCP
counterpart topography. Indeed, the two patterns were
characterized by relatively reduced regional activity in the
precuneus and medial parietal cortex and in medial pre-
frontal and supplementary motor regions [Huang et al.,
2007a]. Interestingly, the fPDCP also included underactive
(blue) regions in the thalamus and inferior parietal cortex
that have subsequently been found also to contribute to
the pPDCP topography [Meles et al., 2015]. As with
pPDCP, fPDCP scores correlated with performance on
tests of memory and executive functioning rather than
motor disability [Huang et al., 2007a]. These features sug-
gest that, if replicated, the fPDCP may have utility as a
non-invasive functional biomarker of cognitive impairment
in non-demented PD patients [Huang et al., 2008; Mattis
et al., 2011].

CONCLUSION

Using the novel ICA-based approach described, we
identified and validated specific PD-related motor and
cognition networks in rs-fMRI scan data. The spatial top-
ographies and behavior of the rs-fMRI-based fPDRP and
fPDCP networks resembled those of the metabolic covari-
ance patterns that were previously characterized using
FDG PET. The stability of network expression values in rs-
fMRI testing data from individual subjects, and the repro-
ducible correlations of those measures with independent

clinical descriptors obtained concurrently in the same indi-
viduals support the potential use of rs-fMRI to identify
specific network biomarkers for brain disorders.
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